If it's not what You are looking for type in the equation solver your own equation and let us solve it.
89x^2+39x-50=0
a = 89; b = 39; c = -50;
Δ = b2-4ac
Δ = 392-4·89·(-50)
Δ = 19321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19321}=139$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-139}{2*89}=\frac{-178}{178} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+139}{2*89}=\frac{100}{178} =50/89 $
| 2(x+3)-x=-4 | | 4x+6=2+3(×+2) | | 10m-3m+8=42 | | n/5/8=4 | | -14=-13+4/3a | | P=14+6d/13 | | 3=y-0.6 | | 6x=2x+58 | | 5x+21=2x+14 | | (9)=m | | 3=y-3/5 | | 4.3=5.1-0.4x | | F(n)=F(n-1)+n*2^n | | -6.9h=-82.8 | | 9=(n) | | 3x+13=8x+2 | | 13c^2=-52 | | 7v+9=-5(v+3) | | x^2-x-10x+204=180 | | 3.6=-0.8+y | | 33-5m=-5(m+3)-8m | | 9/12=0.6/x | | 4y+34=-2(y-2) | | -3x=(6-2x) | | 1/2a+11/4=1/4a | | (1/5)x-7=3 | | 1+x=45 | | 5=d/3+4 | | 6p=-1/4 | | r-3.9=-4.7 | | 1/3*150000=x | | (11/2+x)+7=35 |